Tuning Interface via Multi-scale Modeling for Superior Carbon Nanotube-polymer Nanocomposites/ Yarns

نویسندگان

  • Elif Ozden-Yenigun
  • Canan Atilgan
  • James Elliott
چکیده

This study is concerned with finding an improved route to achieve superior properties of carbon nanotube (CNT)-reinforced nanocomposites by designing their interface using multi-scale modeling. CNTs, widely used as fillers in nanocomposites, and polymer epoxy matrices, are coarse-grained and simulated via dissipative particle dynamics. Then, reverse-mapping of the coarse-grained models into atomistic detail is implemented. The crosslinking mechanism is simulated at the atomistic detail and thermoset matrices containing EPON 862 and TETA hardener molecules with different crosslinking degrees are reconstructed. The physical and mechanical properties of nanocomposites are studied at the molecular level so that optimum process and materials parameters, which are tuned in the production of CNTs reinforced composites, can be explored in detail. The overall mechanical response of uncrosslinked and crosslinked matrix and nanocomposites generated from reverse-mapped systems when subjected to mechanical loading is provided by the stress-strain relationship (up to 5% strain) is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

Effects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties

In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...

متن کامل

Predicting Young’s Modulus of Aggregated Carbon Nanotube Reinforced Polymer

Prediction of mechanical properties of carbon nanotube-based composite is one of the important issues which should be addressed reasonably. A proper modeling approach is a multi-scale technique starting from nano scale and lasting to macro scale passing in-between scales of micro and meso. The main goal of this research is to develop a multi-scale modeling approach to extract mechanical propert...

متن کامل

Finite Element Modeling of the Vibrational Behavior of Single-Walled Silicon Carbide Nanotube/Polymer Nanocomposites

The multi-scale finite element method is used to study the vibrational characteristics of polymer matrix reinforced by single-walled silicon carbide nanotubes. For this purpose, the nanoscale finite element method is employed to simulate the nanotubes at the nanoscale. While, the polymer is considered as a continuum at the larger scale. The polymer nanotube interphase is simulated by spring ele...

متن کامل

A comprehensive review on modeling of nanocomposite materials and structures

This work presents a historical review of the researches procured by various scientists and engineers dealing with the nanocomposite materials and continuous systems manufactured from such materials. Nanocomposites are advanced type of well-known composite materials which have been reinforced with nanosize reinforcing fibers and/or particles. Such materials can be better suit for the industrial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015